Texture Mapping Unit, Revision 2

Sébastien Bourdeauducq

April 2010

1 Presentation

The texture mapping unit supports the following operations:

e 2D texture mapping on a tesselation of equally-sized rectangles.
e Operates only on rectangular rendering primitives (no triangles).
e Fixed-point texture coordinates (1/64 pixel resolution).

e Configurable bilinear texture filtering.

e Configurable texture wrapping (only dimensions that are a power of 2 are supported for
wrapping).

e Configurable texture clamping (any dimension).
e Up to 2047x2047 texture size.

e Up to 2047x2047 output buffer resolution.

e Chroma key filtering.

e Fading to black.

The core processes 16-bit RGB565 progressive-scan framebuffers, accessed via FML links with
a width of 64 bits and a burst length of 4.

The vertex data is fetched using a 32-bit WISHBONE master. Connecting this bus to the
WISHBONE-to-FML caching bridge allows the mesh data to be stored in cost-effective DRAM.

For controlling the core, a CSR bus slave is also implemented.

2 Configuration and Status Registers

Registers can be read at any time, and written when the core is not busy. Write operations
when the busy bit is set in register 0, including those to the control register, are illegal and can
cause unpredictable behaviour.

Addresses are in bytes to match the addresses seen by the CPU when the CSR. bus is bridged
to Wishbone.

2.1 Parameters and control

Offset | Access | Default | Description

0x00 RW 0 Control register.

Bit 0: Start/Busy.

Bit 1: Enable chroma key.

0x04 RW 32 Number of mesh rectangles in the X direction (which is the
number of mesh points minus one, and also the index of the
last mesh point).

0x08 RW 24 Number of mesh rectangles in the Y direction.

0x0C RW 63 Brightness, between 0 and 63. The components of each pixel
are multiplied by (”67;1) and rounded to the lowest integer.
That means that a value of 0 in this register makes the destina-
tion picture completely black (because of the limited resolution
of RGB565).

0x10 RW 0 RGB565 color used as chroma key. Texture pixels with this
color will not be drawn if the “chroma key” flag in the control
register is set.

0x14 RW 0 Vertex mesh address. The address must be aligned to a 64-bit
boundary.

0x18 RW 0 Texture buffer address. The address must be aligned to a 16-
bit boundary.

0x1C RW 512 Texture horizontal resolution.

0x20 RW 512 Texture vertical resolution.

0x24 RW Ox 3ttt Binary mask ANDed to the fixed-point X texture coordinate

during interpolation. This mask can be used to control texture
wrapping and filtering.

0x28 RW Ox 3ttt Binary mask ANDed to the fixed-point Y texture coordinate
during interpolation.

0x2C RW 0 Destination framebuffer address. The address be aligned to a
16-bit boundary.

0x30 RW 640 Destination horizontal resolution.

0x34 RW 480 Destination vertical resolution.

0x38 RW 0 X offset added to each destination pixel, allowing the use of

the TMU as a blitter. Negative offsets in two’s complement
format are supported.

0x3C RW 0 Y offset added to each destination pixel.

0x40 RW 16 Width of each destination rectangle.

0x44 RW 16 Height of each destination rectangle.

0x48 RW 63 Opacity (alpha) used when drawing in the destination frame-

buffer. 0 = high transparency, 63 = totally opaque. A value
of 63 saves memory bandwidth by removing the need to read-
modify-write the destination framebuffer.

3 Interrupts

The TMU is equipped with one active-high edge-sensitive interrupt line.

An interrupt is triggered when a texture mapping is done and all resulting data has been sent

through the bus master.

4 Encoding the vertex data

The core supports a maximum mesh of 128x128 points. The address of the point at indices
(z,y) in the mesh is, regardless of the actual the number of mesh points:

base + 8- (128 -y + z)

This means that the mesh always has the same size in memory.

Each point is made up of 64 bits, with the 32 upper bits being the X coordinate and the 32 lower
bits the Y coordinate, in fixed-point two’s complement signed format with 6 bits of fractional
part.

Exactly 128kB are used by the mesh.

5 Architecture

The texture mapping unit has a deeply pipelined architecture following the “dataflow” model.
The first stage fetches vertex data, which are in turn passed to the second stage which computes
operands for the division, done in the third stage, used in linear interpolations, etc.

5.1 Handshake protocol between pipeline stages

Because pipeline stages are not always ready to accept and/or to produce data (because, for
example, of memory latencies), a flow control protocol must be implemented.

The situation is the same between all stages: an upstream stage is registering data into a
downstream stage. During some cycles, the upstream stage cannot produce valid data and/or
the downstream stage is processing the previous data and has no memory left to store the
incoming data.

Upstream stage

Data stb ack

\4

Downstream stage

Figure 1: Communication between two pipeline stages.

Appropriate handling of these cases is done using standardized stb and ack signals. The mean-
ing of these is summarized in this table:

stb | ack | Situation

0 0 The upstream stage does not have data to send, and the downstream stage is not
ready to accept data.

0 1 The downstream stage is ready to accept data, but the upstream stage has cur-
rently no data to send. The downstream stage is not required to keep its ack
signal asserted.

1 0 The upstream stage is trying to send data to the downstream stage, which is
currently not ready to accept it. The transaction is stalled. The upstream stage
must keep stb asserted and continue to present valid data until the transaction
is completed.

1 1 The upstream stage is sending data to the downstream stage which is ready to

accept it. The transaction is completed. The downstream stage must register the
incoming data, as the upstream stage is not required to hold it valid at the next
cycle.

It is not allowed to generate ack combinatorially from stb. The ack signal must always represent
the current state of the downstream stage, ie. whether or not it will accept whatever data we
present to it.

6 Bilinear filtering

6.1

Principle

Bilinear filtering works by adding 6 extra bits of precision to the texture coordinates, which
become fixed-point non-integer coordinates.

Those bits are used to compute a weighted average of 4 neighbouring texture pixels when the
interpolated texture coordinates are not integer.

1

1, 2, 3, 4: real texture pixels
2 grayed box: wanted texture pixel with non-integer
coordinates

4 The resulting pixel has its color proportional
to the surface of each real texture pixel it covers.

Figure 2: Principle of bilinear texture filtering.

6.2 Pixel distribution in the cache

Because of performance requirements, all four texture pixels must be fetched in one clock cycle.
It is therefore relevant to examine their distribution in the cache, to determine what cache
architecture should be used.

6.2.1 General case, middle of texture

"5

AN
2 (b3

Figure 3: Most common case, pixels 1 and 2 are in the same cache line.

Figure 4: Pixels 1 and 2 are in different cache lines.

6.2.2 With clamping

When pixels go out of the texture, clamping can induce cases where two or four pixels merge.

1/3(2/4 -

Figure 5: Example of pixels merging because Y1=-1.

6.2.3 With wrapping

Wrapping can cause pixels split across the texture. This can happen horizontally, vertically or

both.
[El

I O

Figure 6: Vertical wrapping.

2 B 1
4 D C 3

Figure 7: Horizontal wrapping.

2 B 1

Figure 8: Wrapping in both directions.

6.3 Cache architecture
6.3.1 Design options

We have two options for designing the cache:

e four separate caches (one for pixel 1, one for pixel 2, etc.)

e a shared cache capable of looking up 4 pixels at a time

Misses happening in the ways for pixels 1, 2, 3 and 4 are likely to be correlated, so a shared
cache architecture is chosen to minimize memory bandwidth.

6.3.2 Avoiding cache conflicts

There could be replacement conflicts that have, at least, a detrimental impact of performance.

Such conflicts happen when:

e (Figure 3) lines A and B collide. This happens when:

hres =0 (mod csize)

(Figure 4) lines A and B collide or lines C and D collide. This does not happen unless the
cache only contains one line, which is not a practical case.

(Figure 4) lines A and C or lines B and D collide. This is the same case as for Figure 3.

(Figure 6) lines A and B collide. This happens when:

hres - (vres — 1) =0 (mod csize)

(Figure 7) lines A and B or lines B and C collide. This happens when:

hres —1 =0 (mod csize)
In the equations above:

e hres is the horizontal resolution in pixels
e vres is the vertical resolution in pixels
e csize is the total number of pixels the cache can hold. It is equal to the cache size in bytes

(not counting the tag memory) divided by 2.

6.3.3 Chosen architecture

The block diagram of the cache architecture is given in Figure 9.

Way 1 Way 1 Way 1 Way 4 Way 4 Way 4
Address Tag Data R Address Tag Data
register lookup lookup register lookup lookup

MUX

Priority encoder

DMA master

v l v

Figure 9: TMU cache architecture for bilinear filtering.

Because cache conflicts can be easily be avoided by choosing the texture resolution carefully,
they are not handled by this architecture. Having a cache conflict results in a lockup of
the cache controller, that requires a reset of the core.

The four-way cache can be efficently implemented on FPGA targets by using two dual-port
block RAMs.

6.3.4 Summary
In order to avoid cache conflicts which lock up the core, one must make sure that:
hres #0 (mod csize)
Additionally, if texture wrapping is enabled, one must also make sure that:
hres - (vres —1) 20 (mod csize)

hres — 1 Z0 (mod csize)

Copyright notice

Copyright (©2007-2010 Sébastien Bourdeauducq.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the LICENSE.FDL file at
the root of the Milkymist source distribution.

