
Texture Mapping Unit, Revision 2Sébastien BourdeauduqApril 20101 PresentationThe texture mapping unit supports the following operations:
• 2D texture mapping on a tesselation of equally-sized retangles.
• Operates only on retangular rendering primitives (no triangles).
• Fixed-point texture oordinates (1/64 pixel resolution).
• Con�gurable bilinear texture �ltering.
• Con�gurable texture wrapping (only dimensions that are a power of 2 are supported forwrapping).
• Con�gurable texture lamping (any dimension).
• Up to 2047x2047 texture size.
• Up to 2047x2047 output bu�er resolution.
• Chroma key �ltering.
• Fading to blak.The ore proesses 16-bit RGB565 progressive-san framebu�ers, aessed via FML links witha width of 64 bits and a burst length of 4.The vertex data is fethed using a 32-bit WISHBONE master. Conneting this bus to theWISHBONE-to-FML ahing bridge allows the mesh data to be stored in ost-e�etive DRAM.For ontrolling the ore, a CSR bus slave is also implemented.2 Con�guration and Status RegistersRegisters an be read at any time, and written when the ore is not busy. Write operationswhen the busy bit is set in register 0, inluding those to the ontrol register, are illegal and anause unpreditable behaviour.Addresses are in bytes to math the addresses seen by the CPU when the CSR bus is bridgedto Wishbone. 1



2.1 Parameters and ontrolO�set Aess Default Desription0x00 RW 0 Control register.Bit 0: Start/Busy.Bit 1: Enable hroma key.0x04 RW 32 Number of mesh retangles in the X diretion (whih is thenumber of mesh points minus one, and also the index of thelast mesh point).0x08 RW 24 Number of mesh retangles in the Y diretion.0x0C RW 63 Brightness, between 0 and 63. The omponents of eah pixelare multiplied by (n+1)
64 and rounded to the lowest integer.That means that a value of 0 in this register makes the destina-tion piture ompletely blak (beause of the limited resolutionof RGB565).0x10 RW 0 RGB565 olor used as hroma key. Texture pixels with thisolor will not be drawn if the �hroma key� �ag in the ontrolregister is set.0x14 RW 0 Vertex mesh address. The address must be aligned to a 64-bitboundary.0x18 RW 0 Texture bu�er address. The address must be aligned to a 16-bit boundary.0x1C RW 512 Texture horizontal resolution.0x20 RW 512 Texture vertial resolution.0x24 RW 0x3�� Binary mask ANDed to the �xed-point X texture oordinateduring interpolation. This mask an be used to ontrol texturewrapping and �ltering.0x28 RW 0x3�� Binary mask ANDed to the �xed-point Y texture oordinateduring interpolation.0x2C RW 0 Destination framebu�er address. The address be aligned to a16-bit boundary.0x30 RW 640 Destination horizontal resolution.0x34 RW 480 Destination vertial resolution.0x38 RW 0 X o�set added to eah destination pixel, allowing the use ofthe TMU as a blitter. Negative o�sets in two's omplementformat are supported.0x3C RW 0 Y o�set added to eah destination pixel.0x40 RW 16 Width of eah destination retangle.0x44 RW 16 Height of eah destination retangle.0x48 RW 63 Opaity (alpha) used when drawing in the destination frame-bu�er. 0 = high transpareny, 63 = totally opaque. A valueof 63 saves memory bandwidth by removing the need to read-modify-write the destination framebu�er.3 InterruptsThe TMU is equipped with one ative-high edge-sensitive interrupt line.An interrupt is triggered when a texture mapping is done and all resulting data has been sent2



through the bus master.4 Enoding the vertex dataThe ore supports a maximum mesh of 128x128 points. The address of the point at indies
(x, y) in the mesh is, regardless of the atual the number of mesh points:

base + 8 · (128 · y + x)This means that the mesh always has the same size in memory.Eah point is made up of 64 bits, with the 32 upper bits being the X oordinate and the 32 lowerbits the Y oordinate, in �xed-point two's omplement signed format with 6 bits of frationalpart.Exatly 128kB are used by the mesh.5 ArhitetureThe texture mapping unit has a deeply pipelined arhiteture following the �data�ow� model.The �rst stage fethes vertex data, whih are in turn passed to the seond stage whih omputesoperands for the division, done in the third stage, used in linear interpolations, et.5.1 Handshake protool between pipeline stagesBeause pipeline stages are not always ready to aept and/or to produe data (beause, forexample, of memory latenies), a �ow ontrol protool must be implemented.The situation is the same between all stages: an upstream stage is registering data into adownstream stage. During some yles, the upstream stage annot produe valid data and/orthe downstream stage is proessing the previous data and has no memory left to store theinoming data.
Figure 1: Communiation between two pipeline stages.Appropriate handling of these ases is done using standardized stb and ak signals. The mean-ing of these is summarized in this table:

3



stb ak Situation0 0 The upstream stage does not have data to send, and the downstream stage is notready to aept data.0 1 The downstream stage is ready to aept data, but the upstream stage has ur-rently no data to send. The downstream stage is not required to keep its aksignal asserted.1 0 The upstream stage is trying to send data to the downstream stage, whih isurrently not ready to aept it. The transation is stalled. The upstream stagemust keep stb asserted and ontinue to present valid data until the transationis ompleted.1 1 The upstream stage is sending data to the downstream stage whih is ready toaept it. The transation is ompleted. The downstream stage must register theinoming data, as the upstream stage is not required to hold it valid at the nextyle.It is not allowed to generate ak ombinatorially from stb. The ak signal must always representthe urrent state of the downstream stage, ie. whether or not it will aept whatever data wepresent to it.6 Bilinear �ltering6.1 PrinipleBilinear �ltering works by adding 6 extra bits of preision to the texture oordinates, whihbeome �xed-point non-integer oordinates.Those bits are used to ompute a weighted average of 4 neighbouring texture pixels when theinterpolated texture oordinates are not integer.
Figure 2: Priniple of bilinear texture �ltering.6.2 Pixel distribution in the aheBeause of performane requirements, all four texture pixels must be fethed in one lok yle.It is therefore relevant to examine their distribution in the ahe, to determine what ahearhiteture should be used.

4



6.2.1 General ase, middle of texture

Figure 3: Most ommon ase, pixels 1 and 2 are in the same ahe line.

Figure 4: Pixels 1 and 2 are in di�erent ahe lines.6.2.2 With lampingWhen pixels go out of the texture, lamping an indue ases where two or four pixels merge.

Figure 5: Example of pixels merging beause Y1=-1.5



6.2.3 With wrappingWrapping an ause pixels split aross the texture. This an happen horizontally, vertially orboth.

Figure 6: Vertial wrapping.

Figure 7: Horizontal wrapping.

Figure 8: Wrapping in both diretions.6



6.3 Cahe arhiteture6.3.1 Design optionsWe have two options for designing the ahe:
• four separate ahes (one for pixel 1, one for pixel 2, et.)
• a shared ahe apable of looking up 4 pixels at a timeMisses happening in the ways for pixels 1, 2, 3 and 4 are likely to be orrelated, so a sharedahe arhiteture is hosen to minimize memory bandwidth.6.3.2 Avoiding ahe on�itsThere ould be replaement on�its that have, at least, a detrimental impat of performane.Suh on�its happen when:
• (Figure 3) lines A and B ollide. This happens when:hres ≡ 0 (mod size)
• (Figure 4) lines A and B ollide or lines C and D ollide. This does not happen unless theahe only ontains one line, whih is not a pratial ase.
• (Figure 4) lines A and C or lines B and D ollide. This is the same ase as for Figure 3.
• (Figure 6) lines A and B ollide. This happens when:hres · (vres− 1) ≡ 0 (mod size)
• (Figure 7) lines A and B or lines B and C ollide. This happens when:hres− 1 ≡ 0 (mod size)In the equations above:
• hres is the horizontal resolution in pixels
• vres is the vertial resolution in pixels
• size is the total number of pixels the ahe an hold. It is equal to the ahe size in bytes(not ounting the tag memory) divided by 2.6.3.3 Chosen arhitetureThe blok diagram of the ahe arhiteture is given in Figure 9.

7



Figure 9: TMU ahe arhiteture for bilinear �ltering.Beause ahe on�its an be easily be avoided by hoosing the texture resolution arefully,they are not handled by this arhiteture. Having a ahe on�it results in a lokup ofthe ahe ontroller, that requires a reset of the ore.The four-way ahe an be e�ently implemented on FPGA targets by using two dual-portblok RAMs.6.3.4 SummaryIn order to avoid ahe on�its whih lok up the ore, one must make sure that:hres 6≡ 0 (mod size)Additionally, if texture wrapping is enabled, one must also make sure that:hres · (vres− 1) 6≡ 0 (mod size)hres− 1 6≡ 0 (mod size)Copyright notieCopyright ©2007-2010 Sébastien Bourdeauduq.Permission is granted to opy, distribute and/or modify this doument under the terms of theGNU Free Doumentation Liense, Version 1.3; with no Invariant Setions, no Front-CoverTexts, and no Bak-Cover Texts. A opy of the liense is inluded in the LICENSE.FDL �le atthe root of the Milkymist soure distribution. 8


