
Texture Mapping Unit, Revision 2Sébastien Bourdeaudu
qApril 20101 PresentationThe texture mapping unit supports the following operations:
• 2D texture mapping on a tesselation of equally-sized re
tangles.
• Operates only on re
tangular rendering primitives (no triangles).
• Fixed-point texture 
oordinates (1/64 pixel resolution).
• Con�gurable bilinear texture �ltering.
• Con�gurable texture wrapping (only dimensions that are a power of 2 are supported forwrapping).
• Con�gurable texture 
lamping (any dimension).
• Up to 2047x2047 texture size.
• Up to 2047x2047 output bu�er resolution.
• Chroma key �ltering.
• Fading to bla
k.The 
ore pro
esses 16-bit RGB565 progressive-s
an framebu�ers, a

essed via FML links witha width of 64 bits and a burst length of 4.The vertex data is fet
hed using a 32-bit WISHBONE master. Conne
ting this bus to theWISHBONE-to-FML 
a
hing bridge allows the mesh data to be stored in 
ost-e�e
tive DRAM.For 
ontrolling the 
ore, a CSR bus slave is also implemented.2 Con�guration and Status RegistersRegisters 
an be read at any time, and written when the 
ore is not busy. Write operationswhen the busy bit is set in register 0, in
luding those to the 
ontrol register, are illegal and 
an
ause unpredi
table behaviour.Addresses are in bytes to mat
h the addresses seen by the CPU when the CSR bus is bridgedto Wishbone. 1



2.1 Parameters and 
ontrolO�set A

ess Default Des
ription0x00 RW 0 Control register.Bit 0: Start/Busy.Bit 1: Enable 
hroma key.0x04 RW 32 Number of mesh re
tangles in the X dire
tion (whi
h is thenumber of mesh points minus one, and also the index of thelast mesh point).0x08 RW 24 Number of mesh re
tangles in the Y dire
tion.0x0C RW 63 Brightness, between 0 and 63. The 
omponents of ea
h pixelare multiplied by (n+1)
64 and rounded to the lowest integer.That means that a value of 0 in this register makes the destina-tion pi
ture 
ompletely bla
k (be
ause of the limited resolutionof RGB565).0x10 RW 0 RGB565 
olor used as 
hroma key. Texture pixels with this
olor will not be drawn if the �
hroma key� �ag in the 
ontrolregister is set.0x14 RW 0 Vertex mesh address. The address must be aligned to a 64-bitboundary.0x18 RW 0 Texture bu�er address. The address must be aligned to a 16-bit boundary.0x1C RW 512 Texture horizontal resolution.0x20 RW 512 Texture verti
al resolution.0x24 RW 0x3�� Binary mask ANDed to the �xed-point X texture 
oordinateduring interpolation. This mask 
an be used to 
ontrol texturewrapping and �ltering.0x28 RW 0x3�� Binary mask ANDed to the �xed-point Y texture 
oordinateduring interpolation.0x2C RW 0 Destination framebu�er address. The address be aligned to a16-bit boundary.0x30 RW 640 Destination horizontal resolution.0x34 RW 480 Destination verti
al resolution.0x38 RW 0 X o�set added to ea
h destination pixel, allowing the use ofthe TMU as a blitter. Negative o�sets in two's 
omplementformat are supported.0x3C RW 0 Y o�set added to ea
h destination pixel.0x40 RW 16 Width of ea
h destination re
tangle.0x44 RW 16 Height of ea
h destination re
tangle.0x48 RW 63 Opa
ity (alpha) used when drawing in the destination frame-bu�er. 0 = high transparen
y, 63 = totally opaque. A valueof 63 saves memory bandwidth by removing the need to read-modify-write the destination framebu�er.3 InterruptsThe TMU is equipped with one a
tive-high edge-sensitive interrupt line.An interrupt is triggered when a texture mapping is done and all resulting data has been sent2



through the bus master.4 En
oding the vertex dataThe 
ore supports a maximum mesh of 128x128 points. The address of the point at indi
es
(x, y) in the mesh is, regardless of the a
tual the number of mesh points:

base + 8 · (128 · y + x)This means that the mesh always has the same size in memory.Ea
h point is made up of 64 bits, with the 32 upper bits being the X 
oordinate and the 32 lowerbits the Y 
oordinate, in �xed-point two's 
omplement signed format with 6 bits of fra
tionalpart.Exa
tly 128kB are used by the mesh.5 Ar
hite
tureThe texture mapping unit has a deeply pipelined ar
hite
ture following the �data�ow� model.The �rst stage fet
hes vertex data, whi
h are in turn passed to the se
ond stage whi
h 
omputesoperands for the division, done in the third stage, used in linear interpolations, et
.5.1 Handshake proto
ol between pipeline stagesBe
ause pipeline stages are not always ready to a

ept and/or to produ
e data (be
ause, forexample, of memory laten
ies), a �ow 
ontrol proto
ol must be implemented.The situation is the same between all stages: an upstream stage is registering data into adownstream stage. During some 
y
les, the upstream stage 
annot produ
e valid data and/orthe downstream stage is pro
essing the previous data and has no memory left to store thein
oming data.
Figure 1: Communi
ation between two pipeline stages.Appropriate handling of these 
ases is done using standardized stb and a
k signals. The mean-ing of these is summarized in this table:

3



stb a
k Situation0 0 The upstream stage does not have data to send, and the downstream stage is notready to a

ept data.0 1 The downstream stage is ready to a

ept data, but the upstream stage has 
ur-rently no data to send. The downstream stage is not required to keep its a
ksignal asserted.1 0 The upstream stage is trying to send data to the downstream stage, whi
h is
urrently not ready to a

ept it. The transa
tion is stalled. The upstream stagemust keep stb asserted and 
ontinue to present valid data until the transa
tionis 
ompleted.1 1 The upstream stage is sending data to the downstream stage whi
h is ready toa

ept it. The transa
tion is 
ompleted. The downstream stage must register thein
oming data, as the upstream stage is not required to hold it valid at the next
y
le.It is not allowed to generate a
k 
ombinatorially from stb. The a
k signal must always representthe 
urrent state of the downstream stage, ie. whether or not it will a

ept whatever data wepresent to it.6 Bilinear �ltering6.1 Prin
ipleBilinear �ltering works by adding 6 extra bits of pre
ision to the texture 
oordinates, whi
hbe
ome �xed-point non-integer 
oordinates.Those bits are used to 
ompute a weighted average of 4 neighbouring texture pixels when theinterpolated texture 
oordinates are not integer.
Figure 2: Prin
iple of bilinear texture �ltering.6.2 Pixel distribution in the 
a
heBe
ause of performan
e requirements, all four texture pixels must be fet
hed in one 
lo
k 
y
le.It is therefore relevant to examine their distribution in the 
a
he, to determine what 
a
hear
hite
ture should be used.

4



6.2.1 General 
ase, middle of texture

Figure 3: Most 
ommon 
ase, pixels 1 and 2 are in the same 
a
he line.

Figure 4: Pixels 1 and 2 are in di�erent 
a
he lines.6.2.2 With 
lampingWhen pixels go out of the texture, 
lamping 
an indu
e 
ases where two or four pixels merge.

Figure 5: Example of pixels merging be
ause Y1=-1.5



6.2.3 With wrappingWrapping 
an 
ause pixels split a
ross the texture. This 
an happen horizontally, verti
ally orboth.

Figure 6: Verti
al wrapping.

Figure 7: Horizontal wrapping.

Figure 8: Wrapping in both dire
tions.6



6.3 Ca
he ar
hite
ture6.3.1 Design optionsWe have two options for designing the 
a
he:
• four separate 
a
hes (one for pixel 1, one for pixel 2, et
.)
• a shared 
a
he 
apable of looking up 4 pixels at a timeMisses happening in the ways for pixels 1, 2, 3 and 4 are likely to be 
orrelated, so a shared
a
he ar
hite
ture is 
hosen to minimize memory bandwidth.6.3.2 Avoiding 
a
he 
on�i
tsThere 
ould be repla
ement 
on�i
ts that have, at least, a detrimental impa
t of performan
e.Su
h 
on�i
ts happen when:
• (Figure 3) lines A and B 
ollide. This happens when:hres ≡ 0 (mod 
size)
• (Figure 4) lines A and B 
ollide or lines C and D 
ollide. This does not happen unless the
a
he only 
ontains one line, whi
h is not a pra
ti
al 
ase.
• (Figure 4) lines A and C or lines B and D 
ollide. This is the same 
ase as for Figure 3.
• (Figure 6) lines A and B 
ollide. This happens when:hres · (vres− 1) ≡ 0 (mod 
size)
• (Figure 7) lines A and B or lines B and C 
ollide. This happens when:hres− 1 ≡ 0 (mod 
size)In the equations above:
• hres is the horizontal resolution in pixels
• vres is the verti
al resolution in pixels
• 
size is the total number of pixels the 
a
he 
an hold. It is equal to the 
a
he size in bytes(not 
ounting the tag memory) divided by 2.6.3.3 Chosen ar
hite
tureThe blo
k diagram of the 
a
he ar
hite
ture is given in Figure 9.

7



Figure 9: TMU 
a
he ar
hite
ture for bilinear �ltering.Be
ause 
a
he 
on�i
ts 
an be easily be avoided by 
hoosing the texture resolution 
arefully,they are not handled by this ar
hite
ture. Having a 
a
he 
on�i
t results in a lo
kup ofthe 
a
he 
ontroller, that requires a reset of the 
ore.The four-way 
a
he 
an be e�
ently implemented on FPGA targets by using two dual-portblo
k RAMs.6.3.4 SummaryIn order to avoid 
a
he 
on�i
ts whi
h lo
k up the 
ore, one must make sure that:hres 6≡ 0 (mod 
size)Additionally, if texture wrapping is enabled, one must also make sure that:hres · (vres− 1) 6≡ 0 (mod 
size)hres− 1 6≡ 0 (mod 
size)Copyright noti
eCopyright 
©2007-2010 Sébastien Bourdeaudu
q.Permission is granted to 
opy, distribute and/or modify this do
ument under the terms of theGNU Free Do
umentation Li
ense, Version 1.3; with no Invariant Se
tions, no Front-CoverTexts, and no Ba
k-Cover Texts. A 
opy of the li
ense is in
luded in the LICENSE.FDL �le atthe root of the Milkymist sour
e distribution. 8


